

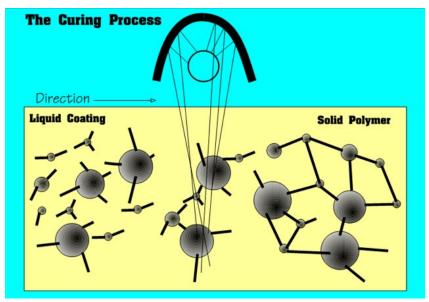
# UV-LED-EB Technology -Radiant Prospects for the Future

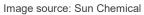
Sector Group Printing Inks German Paint and Printing Ink Association (VdL)





| Basics                    |
|---------------------------|
| Standard UV               |
| Low Energy UV             |
| LED UV                    |
| Electron beam curing (EB) |
| Inkjet                    |
| Food packaging            |



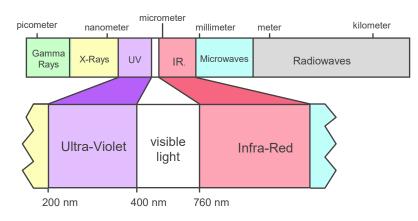


# **Basics** Standard UV Low Energy UV LED UV Electron beam curing (EB) Inkjet Food packaging



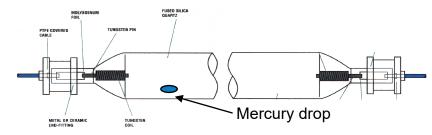
| Sheet Fed Ink | Gravure/Flexo Ink | EC (UV/EB) Ink   |
|---------------|-------------------|------------------|
| Pigments      | Pigments          | Pigments         |
| Resins        | Resins            | Poly-/Oligomers  |
| Oils          | Solvents          | Monomers         |
| Additives     | Additives         | Additives        |
|               |                   | Photoinitiators* |
|               |                   | * 11/ 00/2       |
|               |                   | * UV only        |

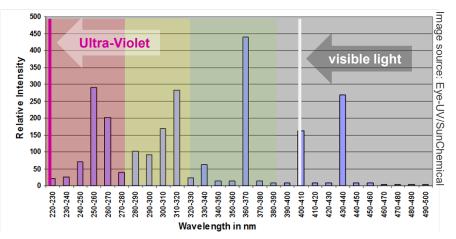
## Curing / drying process





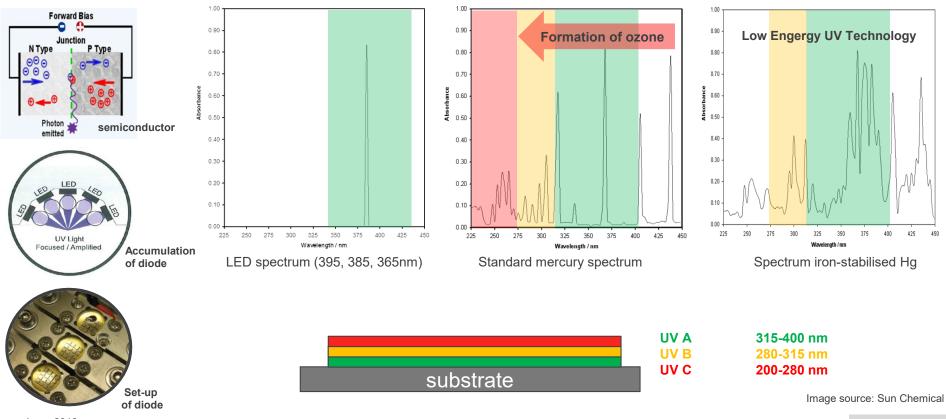

Link to ink The combined ink know how


# Colour drying – curing by UV/EB


Link to ink The combined ink know how

- UV light = electromagnetic radiation
- shorter wavelength than visible light

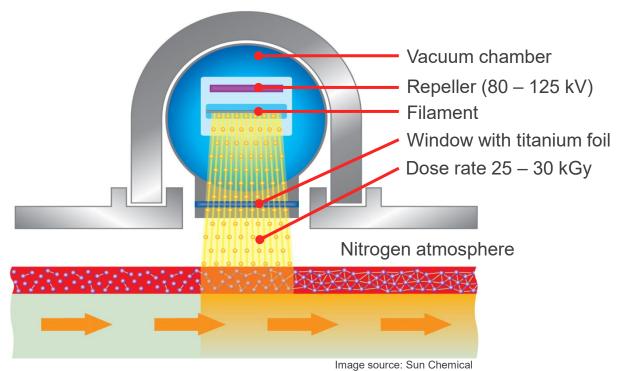



#### Standard mercury vapour lamp (medium pressure)





# LED UV + LE UV technology


Link to ink The combined ink know how



drupa 2016



How does an electron beam work?





| Basics                    |
|---------------------------|
| Standard UV               |
| Low Energy UV             |
| LED UV                    |
| Electron beam curing (EB) |
| Inkjet                    |
| Food packaging            |



**Applied in all print processes:** 

- Commercial print (paper, film)
- Label print (paper, film)
- Packaging print (paper, cardboard, film, foil, tinplate)
- Objects print (cups, tubes, bottles, 3-D objects)





Image source: Siegwerk (www.siegwerk.com)

Advantages of UV curing:

• Wide choice of substrates

Standard UV

- Easy handling (cleaning, no self curing, no explosion-protection)
- Quality intensification (gloss, resolution, abrasion resistance, fastness)
- Immediate processing
- VOC free









Image source: Siegwerk (www.siegwerk.com)



## Challenges of UV curing:

- Investment costs (lamp, extraction system)
- Operating costs (energy, maintenance, ink)
- Work place safety (ozone, handling of ink)
- Food packaging





| Basics                    |  |
|---------------------------|--|
| Standard UV               |  |
| Low Energy UV             |  |
| LED UV                    |  |
| Electron beam curing (EB) |  |
| Inkjet                    |  |
| Food packaging            |  |
| r ood paolaging           |  |



- Developed for commercial printing (sheetfed)
- Avoidance of ozone producing radiation
- Low power consumption
- Special ink system required



| Standard UV<br>Low Energy UV<br>LED UV<br>Electron beam curing (EB)<br>Inkjet |
|-------------------------------------------------------------------------------|
| LED UV<br>Electron beam curing (EB)                                           |
| Electron beam curing (EB)                                                     |
|                                                                               |
| Inkjet                                                                        |
| 5                                                                             |
| Food packaging                                                                |



**LED-UV** curing used for:

- Commercial print (paper, film)
- Packaging print (paper, cartonboard, film)
- Objects print (tubes, bottles, 3-D objects)

LED - UV



#### **Advantages**

- Energy-saving potential (no preheating time, pulsable circuit)
- No ozone creation
- Almost no heat input to substrate
- Long durability
- Constant radiation output
- Free of mercury

# Challenges

- Food packaging (reactivity / limit of migration)
- Varnishes (curing of surface, yellowing, cost)
- Limited choice of raw materials
- Energy density wavelength
- Young technology



| ics |
|-----|
|     |
|     |

Standard UV

Low Energy UV

LED UV

**Electron beam curing (EB)** 

Inkjet

Food packaging



# **EB Offset**

- Reel-fed offset printing (no lamp for sheetfed offset)
- Tension control of substrate (no intermediate drying)
- Flexible printing length (request of flexible packaging market)
- Inline printing machines of different machine manufacturers
- Central cylinder offset press

# EB flexo

- Central cylinder flexo (wet on wet printing)
- Various developments of technology (some with intermediate drying)

Other developments

- Narrow web EB lamp
- Screen and gravure printing
- Inkjet

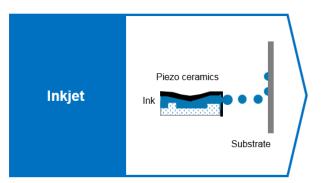


### Advantages EB

- Process safety by controlled dose rate
- Low migration potential (photoinitiators, polymerisation)
- Low operating expenses (maintenance cycles, energy, spare parts)
- No heat input (IR) to substrate
- Free of mercury

# **Challenges EB**

- Investment costs
- Influence on substrates
  - Discolouration of some PA, PVC, OPP formulations
  - PE heat-seal temperature
  - o OPP- hot tack window
  - Some substrates show fission products
  - Smell of substrates containing chlorine




| Basics                    |
|---------------------------|
| Standard UV               |
| Low Energy UV             |
| LED UV                    |
| Electron beam curing (EB) |
| Inkjet                    |
| Food packaging            |

Inkjet



- Established printing method for small print jobs
- LED-UV, as well in combination
- 3-D printing
- EB under development
- Many applications with exceptions to be developed







#### **Advantages**

- Prepress software-based only
- No set-up times
- Minimal wastage
- Individualization
- Non-contact printing

# Challenges

- Speed of printing
- Dependency of print head ink
- Food packaging
- Limited choice of raw materials
- Colour spectrum branding
- Higher resolution



| Basics                    |
|---------------------------|
| Standard UV               |
| Low Energy UV             |
| LED UV                    |
| Electron beam curing (EB) |
| Inkjet                    |
| Food packaging            |

# **Food packaging printing**



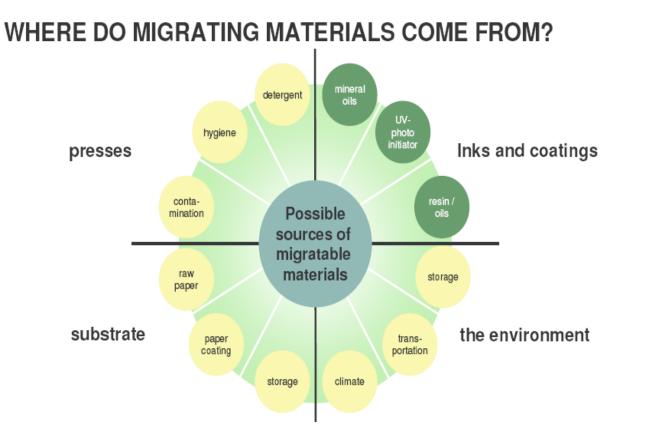



Image source: Sun Chemical

# Food packaging printing



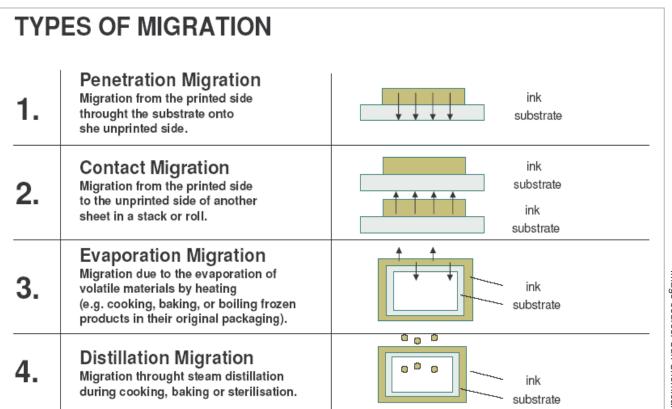



Image source: Sun Chemical



| High migration potential                       |                    | Low migration potential |                                        |
|------------------------------------------------|--------------------|-------------------------|----------------------------------------|
| Not polymerised<br>specious in the ink<br>film | typ                |                         | Polymerised into crosslinked ink film. |
| Low molecular weight                           | •- <del>-</del> -@ | Nagonia (Sala)          | High molecular weight<br>(> 1.000 Da)  |
| Soluble in food stuff                          |                    |                         | Hardly soluble in food stuff           |



#### **Technologies of curing**

| Technology | Market share<br>2015 | Development<br>of ink | Range of applications |
|------------|----------------------|-----------------------|-----------------------|
| EB         | ++                   | ++++                  | ++++                  |
| UV         | ++++                 | ++++                  | +++                   |
| UV LE      | +                    | +                     | +                     |
| UV LED     | -                    | +                     | +                     |



- Printing food packaging with UV / EB curing is possible!
- Requirements:
  - Use of low migration inks
  - Proper processing
  - Confirmation by appropriate analyses of migration





#### **Sector Group Printing Inks**

German Paint and Printing Ink Association Mainzer Landstraße 55 60329 Frankfurt am Main Germany

| Phone:  | +49 69 2556-1411       |
|---------|------------------------|
| E-Mail: | vdl@vci.de             |
| Web:    | www.druckfarben-vdl.de |